La diversidad de pensamiento crea “disrupción constructiva” (EDUCACION DISRUPTIVA -learnig is the work) :influencia en las nuevas formas de pensar, innovación y nuevas iniciativas)

Juan Domingo Farnós

Image for post
Image for post

Cada vez más vamos a situaciones donde “las organizaciones que definen a las personas, las personas definen a las instituciones”.

Estamos próximos a la posibilidad de utilizar agentes que comprenden contextos, que sean capaces de hacer “coherente” el sentido de los flujos de datos variados para buscar información, descubrir y proporcionar el contenido necesario para cada uno..

Una cosa que me parece fascinante la idea de que se podrá crear un “perfil de aprendizaje”, una identidad que es esencialmente un paquete digital de nuestras preferencias de aprendizaje y los contenidos del aprendizaje del pasado, que se podrá acceder por las máquina (PERSONALIZED LEARNING + MACHINE LEARNING. by Juan Domingo Farnos)

Esto permitirá que la “máquina” en realidad adapte sus interfaces de usuario, el contenido de aprendizaje y la experiencia en sí misma, y presentar información de una manera que se adapte a las preferencias de los humanos….eso sin duda nos lleva a la VERDADERA SOCIEDAD INTELIGENTE.

Todo ello ocasionará un Aprendizaje integrado — aprendizaje en red que estará integrado en cada dispositivo, cada herramienta, cada recurso físico de LAS PERSONAS, no hay necesidad de una formación específica, la información más reciente estará disponible sólo en el tiempo, de fuentes auténticas COMPUTACIÓN UBÍCUA E I-BICUA, a juzgar por el valioso análisis de la red, siempre con el contexto y que las personas prestemos nuestra ayuda.

La Personalización puede tomar muchas formas, ya que se adapta el contenido, la práctica, la retroalimentación, o de dirección para que coincida con el progreso y el rendimiento individual. Por ejemplo, dos personas que utilizan la misma instrucción al mismo tiempo pueden ver dos conjuntos completamente diferentes de los objetos de aprendizaje. El mayor beneficio de la personalización de aprendizaje es la capacidad para hacer más fácil la instrucción compleja, presentando sólo lo concreto que será útil o aceptado por cada uno.

Estamos hoy en la clase difusa del pensamiento calculador y comparaciones cuantitativas insta a que el utilitarismo, tal razonamiento no se basa en el trabajo de visibilidad a hacer. Más bien, eso depende de algoritmos de análisis, que a su vez depende de la presa de los algoritmos silenciosos –los que convierten en silencio nuestro comportamiento en una avalancha de datos. (son la metafora de los presos alrededor que se pusieron alrededor de una torre de vigilancia para ser visualizados, hasta que estos alcanzaron la manera de evitarlo( estos eran los algoritmos)….

Si partimos de la idea de que la REALIDAD es múltiple, podemos entender por qué aprender en la diversidad no tiene porque llevarnos a un punto común-….esta premisa es fundamental para entender el pensamiento crítico en los aprendizajes y sin la cuál sería imposible llevar a cabo aprendizajes basados en la diversidad-INCLUSIVIDAD (EXCELENCIA)…

Todo el mundo será capaz de clasificar los datos como quieran. Cualquier disciplina, ninguna cultura, ninguna teoría será capaz de clasificar los datos a su manera, para permitir la diversidad, utilizando un único metalenguaje, para garantizar la interoperabilidad. (EXCELENCIA PERSONALIZADA AUTOMATIZADA), por medio de una mezcla de inteligencia artificial y algorítmica.

El beneficio más evidente de estas innovaciones es la creación de una ecología de aprendizaje que comparte recursos de grandes depósitos de contenidos en los objetos de aprendizaje que se comparten de forma individual, ampliamente, y de forma más económica.

Por tanto debemos elegir entre dos posturas que condicionarán el futuro de la Sociedad, ya que la Educación es una de las principales piedras angulares en que gravita cualquier hábitat.

Una, sería seguir buscando mejoras, modificaciones, regeneraciones…a los Sistemas Educativos de amplio aspectro que venimos realizando las últimas generaciones-que sería seguir con una Educación eminentemente formal, estandarizada,

homogeneizadora…basada en Curriculums prescriptivos e igualadores… y enfocada a dar resultados que generen titulaciones previstas para que luego deriven en la sociedad en los trabajos clásicos de siempre…..

INCLUSO DENTRO DE UN PROCESO transversal y multidisciplinar, para lograr nos lo eso, sino una autonomía en los aprendizajes y una personalización, como nunca hasta ahora se ha producido (POR TANTO TOTALMENTE ORIGINAL, apoyada en todo lo que les escribo, más las distintas potencialidades que tenemos de aprendizaje que tenemos las personas en nuestro cerebro y que les visualizo.

No podemos confundir la aplicación de los algoritmos en el aprendizaje personalizado (personalized learning), algunos lo llaman educación personalizada, aunque realmente está muy lejos uno de la otra, como realizar clases particulares, tal como hacen algunas escuelas de Nueva York, “utiliza el análisis de aprendizaje para desarrollar en las matemáticas personalizadas programas de aprendizaje. La Escuela con algoritmos de aprendizaje realiza evaluaciones cotidianas de estilos de aprendizaje y matemáticas de los estudiantes, y lo hace para producir un aprendizaje “lista de reproducción” personalizado para cada alumno. Esta lista se compone de clases particulares de matemáticas, que se ponen en el orden en que el algoritmo determina que es óptimo para el desarrollo de las habilidades matemáticas de los estudiantes. Ciertamente, Escuela de uno se apresura a señalar que este está destinado a complementar, no sustituir, la experiencia de un maestro individual”…

Estamos ya convencidos que la web ofrece la tecnología perfecta y el medio ambiente para el aprendizaje personalizado porque para los aprendices puede ser identificativa, el contenido se puede personalizar específicamente, y el progreso del alumno puede ser monitoreado, apoyado y evaluado.

Tecnológicamente y técnicamente, los investigadores estamos haciendo progresos hacia la realización del sueño del aprendizaje personalizado con la tecnología de objetos de aprendizaje (para algunos adaptativos, para nosotros, nada más lejos de la realidad, no hay nada de adaptación, si no de personalización, que no es lo mismo) y eso el machine learning puede ayudarnos a conseguirlo.

Sin embargo, dos consideraciones importantes están siendo ignoradas o pasadas por alto en el cumplimiento del sueño de personalización con machine learning:

El Machine learning identificará y categorizará las entradas repetitivas y utilizar la retroalimentación para fortalecer y mejorar su rendimiento. Es un proceso similar a cómo un niño aprende los nombres y la identidad de los animales, haciendo coincidir las palabras con las imágenes; el ordenador, poco a poco, aprende a procesar la información correctamente.

La evolución de los algoritmos que “aprenden” de los datos sin tener que programarse de forma explícita. Un subgrupo particular de Machine Learning se conoce como “aprendizaje profundo” (Deep Learning). Este término describe el uso de un conjunto de algoritmos llamados redes neuronales que toman como modelo el cerebro humano. Los avances en este aprendizaje profundo han impulsado una rápida evolución de las tareas de aprendizaje por parte de las máquinas en los últimos años, en particular el procesamiento del lenguaje y texto, y la interpretación de imágenes y vídeos. Estos sistemas, por ejemplo, llegan a identificar caras o a interpretar el idioma natural a una velocidad y con un grado de acierto que puede superar al de un ser humano.

“Sin entrar en detalles complejos sobre los diferentes paradigmas de Inteligencia Artificial y su evolución podemos dividir dos grandes grupos: la IA robusta y la IA aplicada.

  • Inteligencia Artificial robusta o Strong AI: trata sobre una inteligencia real en el que las máquinas tienen similar capacidad cognitiva que los humanos, algo que, como los expertos se aventuran a predecir, aún quedan años para alcanzar. Digamos que esta es la Inteligencia de la que soñaban los pioneros del tema con sus vetustas válvulas.

El Machine Learning en su uso más básico es la práctica de usar algoritmos para pasar datos, aprender de ellos y luego ser capaces de hacer una predicción o sugerencia sobre algo.

El Machine Learning en su uso más básico es la práctica de usar algoritmos para parsear datos, aprender de ellos y luego ser capaces de hacer una predicción o sugerencia sobre algo. Los programadores deben perfeccionar algoritmos que especifiquen un conjunto de variables para ser lo más precisos posibles en una tarea en concreto. La máquina es entrenada utilizando una gran cantidad de datos dando la oportunidad a los algoritmos a ser perfeccionados.

El sueño de entregar el aprendizaje personalizado utilizando objetos de aprendizaje que se ajusta al tiempo real, en cualquier lugar, en cualquier momento, justo suficientes necesidades del estudiante está a punto de convertirse en una realidad. Hoy en día, junto con muchos desarrollos importantes en la psicología de la instrucción, estándares abiertos, lenguajes de marcas estructuradas para la representación de datos interoperables, y el cambio de control de flujo de instrucción desde el cliente al servidor, una base totalmente nueva está haciendo realmente personalizado de aprendizaje en línea .

“Poco a poco las características subversivas de la computadora fueron erosionados distancia: En lugar de cortar a través y así desafiar la idea misma de fronteras temáticas, el equipo ahora se define un nuevo tema; en lugar de cambiar el énfasis del currículo impersonal a la exploración en vivo emocionados por los estudiantes, el ordenador se utiliza ahora para reforzar los caminos de la escuela. Lo que había comenzado como un instrumento subversivo de cambio fue neutralizado por el sistema y se convierte en un instrumento de consolidación”..… Audrey Watters

Loadaptativo” es el ‘ajuste de una o más características del entorno de aprendizaje’. Estas acciones adaptativas tienen lugar en tres áreas distintas:

1-Apariencia/forma: Cómo se muestran al aprendiz las acciones de aprendizaje, como contenido, incorporación de texto, gráficos o videos, etc. La mayoría de las plataformas adaptativas de hoy día lo denominan “consumo de contenido” y esperan que el conocimiento se adquiera simplemente leyendo el contenido.

2-Orden/secuencia: Cómo se ordenan y se bifurcan las acciones de aprendizaje según el progreso del alumno, como las rutas de aprendizaje.

3-Orientación hacia el objetivo/dominio Las acciones del sistema que conducen al aprendiz hacia el éxito (excelencia personalizada)

Esto permite que se realicen cambios según los resultados óptimos de aprendizaje, el grado de dificultad y el creciente nivel de conocimientos o aptitudes del alumno.

Estamos hoy en la clase difusa del pensamiento calculador y comparaciones cuantitativas insta a que el utilitarismo, tal razonamiento no se basa en el trabajo de visibilidad a hacer. Más bien, eso depende de algoritmos de análisis, qui a su vez depende de la presa de los algoritmos silenciosos –los que convierten en silencio nuestro comportamiento en una avalancha de datos. (son la metafora de los presos alrededor que se pusieron alrededor de una torre de vigilanca para ser visualizados, hasta que estos alcanzaron la manera de evitarlo( estos eran los algoritmos)….

Este precio informativo se compone de DATOS ESTANDARIZADOSa través del que hemos llegado a definir nosotros mismos: transcripciones escolares, registros de salud, cuentas de crédito, títulos de propiedad, identidades legales. Hoy en día, tesis arraigada tipo de individualidad datos están siendo blanco amplió para abarcar más y más de lo que podemos ser: (En educación seria el PERSONALIZED LEARNING, que nosotros mismos abogamos y además instauramos en algoritmos personalizados, nunca creadores de patrones)..

La personalización por las tecnologías digitales sólo libera los seres humanos para personalizar mejor nuestra vida (es decir, encontrar nuestras propias maneras), lo demás deben hacerlo las tecnologías y e aquí mi insistencia en conseguir un ALGORITMO, el cual pueda facilitar la recepción deDATOS, pasarlos por un proceso de ANALISIS Y CRITICA, lo que los transformará en APRENDIZAJES. Si todo el proceso esta evaluado, necesitaremos el algoritmo para que nos realice la retroalimentación. Lo cual hará que todo nuestro proceso de aprendizaje este ayudado por este proceso tecnológico, pero siempre seremos nosotros quienes elijamos en última instancia el camino que vaos a seguir, frente a las múltiples propuestas en “beta” que nos presentará la tecnología…

La personalización por las tecnologías digitales sólo libera los seres humanos para personalizar mejor nuestra vida (es decir, encontrar nuestras propias maneras), lo demás deben hacerlo las tecnologías y e aqui mi insistencia en conseguir un ALGORITMO, el cual pueda facilitar la recepcion de DATOS, pasarlos por un proceso de ANALISIS Y CRITICA, lo que los transformará en APRENDIZAJES. Si todo el proceso esta evaluado, necesitaremos el algoritmo para que nos realice la retroalimentación, lo cual hará que todo nuestro proceso de aprendizaje este ayudado por este proceso tecnológico, pero siempre seremos nosotros quienes elijamos en última instancia el camino que vamos a seguir, frente a las múltiples propuestas en “beta” que nos presentará la tecnología.

Pronto el registro y análisis de datos semánticos podrá convertirse en un nuevo lenguaje común para las ciencias humanas y contribuir a su renovación y el desarrollo futuro.

Juan Domingo Farnós Miró

Written by

Investigador y docente en e-learning, tecnologías educativas y gestión de l conocimiento, online facilitator.

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store